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Transverse beam stability with an ‘‘electron lens’’

A. Burov,* V. Danilov,† and V. Shiltsev
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

~Received 29 July 1998!

This article is devoted to stability analysis of the antiproton beam interacting with an electron beam in an
‘‘electron lens’’ setup for beam-beam compensation in the Tevatron collider. Electron space charge forces
cause transverse ‘‘head-tail’’ coupling within antiproton bunch which may lead to a transverse mode coupling
instability ~TMCI!. We present a theory, analytical studies, and numerical simulations of this effect. An
estimate of threshold longitudinal magnetic field necessary to avoid the instability is given. Dependence of the
threshold on electron and antiproton beam parameters is studied.@S1063-651X~99!10203-4#

PACS number~s!: 41.75.Lx, 29.27.Bd
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I. INTRODUCTION

Proton and antiproton beams in the Tevatron collider
teract via their electromagnetic forces at two collision poi
B0 and D0, and at numerous locations along separated o
in the same vacuum chamber where they near miss e
other. Such an interaction causes betatron oscillation t
shift and tune spread in both beams. The tune shift and
tune spread are supposedly much larger in the antipro
beam than in the proton one, because the proton intensi
several times larger, and can reach values of about 0.01-
in the Tevatron luminosity upgrade project TEV33@1#.
These effects are expected to be a problem for the mac
operation if uncorrected. Compensation of the beam-be
effects in the Tevatron with use of a high current, low ene
electron beam was proposed in Refs.@2–4#. The electron
beam travels in the direction opposite to the antiproton be
and interacts with an antiproton bunch via its space cha
forces. The proton beam has to be separated from the e
tron and antiproton beams. Implementation of the propo
are ~1! the ‘‘electron lens’’ with modulated current to pro
vide different linear defocusing forces for different antipr
ton bunches~the bunch spacing ist5132 ns in the TEV33!
in order to equalize their betatron frequencies which are
naturally equal due to proton-antiproton interaction in n
merous parasitic crossings along the ring; and~2! the ‘‘elec-
tron compressor,’’ that is nonlinear dc electron lens to co
pensate~on average! the nonlinear focusing due to the proto
beam.

The electron beam setup is to be installed away from
proton-antiproton interaction points at B0 and D0 and co
look much like an ‘‘electron cooler’’~see, e.g.@5#!, except
electrons collide with antiprotons. The negative tune shift
the antiprotons (p̄s) due to a round, constant density electr
beam with total currentJe , radiusae , interacting with anti-
protons over a lengthLe , is equal to@3#
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, ~1!

here r p̄5e2/(M p̄c2)'1.53310218 m is the ~anti!proton
classical radius,g p̄ is relativistic antiproton factor,ve5cbe
is electron beam velocity,bx,y is the beta function at the
set-up location (x for horizontal,y for vertical!. For example,
Le52 m long set-up withJe51.5 A current of 10 kV elec-
trons (be50.2) installed atbx5100 m can shift the hori-
zontal tune of the 1 TeV antiprotons byjx

e'29.131023 if
the electron beam radius isae51 mm. Strong longitudinal
magnetic field plays a significant role in maintaining stabil
of both electron and antiproton beams@6#. It also suppresses
the electron beam current distribution distortions and, the
fore, the electron space charge force distortions@7#.

Low energy electrons can create significant transverse
pedance comparable with intrinsic impedance of the Te
tron ring, that can result in collective instabilities of the a
tiproton bunch. The electron beam is generated by
electron gun cathode, transported through the interaction
gion, and absorbed in the collector. Therefore, each por
of electrons passes through thep̄ beam only once, and only
short distance transverse wake fields are of interest. The m
important collective effect is similar to the ‘‘strong hea
tail’’ interaction, considered, e.g., in@8#. It is assumed that
the Tevatron ring chromaticity can be made close to zero
the increments of so-called ‘‘weak head-tail’’@8# instability
are negligible.

In this article we study ‘‘strong head-tail’’ instability in
the p̄ beam caused by wide band impedance due to the e
tron beam. The phenomenon takes place if, for example,
centroid of the bunch head collides off the electron be
center. Electron-antiproton repulsion causes electron mo
and, as a result, the electron beam acquires a displaceme
the moment when it interacts with the tail of thep̄ bunch.
Thus, the impact of the electron beam on the following a
tiprotons depends on the transverse coordinate of prece
p̄s. The effect is similar to what is observed in electron st
age rings where short range wake fields due to vacu
chamber discontinuities can lead to transverse mode c
pling instability ~TMCI! @8#. The TMCI in electron rings
limits the maximum single bunch current. In our case,

e,
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3606 PRE 59A. BUROV, V. DANILOV, AND V. SHILTSEV
source of the coupling is the electron space charge which
basic mechanism for the beam-beam compensation and,
can not be avoided. The way to counteract the instability
to increase the electron beam rigidity, to make its mot
during the collision smaller. Naturally it can be done using
strong longitudinal magnetic field in the interaction region

Theoretical analysis of the ‘‘head-tail’’ stability in a tw
mode model is presented in Sec. II of this article. In Sec.
we analyze synchro-betatron modes of the antiproton bu
motion. Section IV is devoted to numerical simulations
the p̄’s dynamics in the Tevatron with the ‘‘electron lens.
Finally, a brief summary is given in Sec. V.

II. TWO MODE MODEL

A. Direct and skew wakes

Conventionally, the analysis of relativistic beam stabil
relies on the wake function concept, see, e.g.,@8#. Electro-
magnetic fields excited in accelerator vacuum pipes v
over transverse distances of about the pipe apertureb, which
is usually much larger than the beam radiusa. That allows
the perturbation to expand on the dipole, quadrupole,
higher order terms over the small parameter (a/b).

The situation is different for the case under study. T
electron beam space charge fields excited by antipro
have about the same transverse extent as thep̄ beam, that
complicates the analysis. However, the interaction can
described by the conventional approach for a specific c
when both p̄ and electron bunches are homogeneous
bounded by the same radiusa5ae5ap̄ . Now electromag-
netic wake fields have a simple radial structure, they can
easily calculated and used in the conventional formalism
the wake functions.

To find the dipole wake function, let us consider a th
antiproton slice with a chargeq and transverse offsetDx
traveling through the electron beam. After interaction w
the slice, electrons acquire a transverse velocity

vxe5
2eqDx

a2gemc
, ~2!

wherem is the electron mass. Such a kick causes transv
Larmor oscillations in a longitudinal magnetic fieldB, and
after a time intervalt, the resulting electron transverse offse
are

xe5
vxe

vL
sin~vLt !; ye5

vxe

vL
„12cos~vLt !…, ~3!

where vL5eB/(gemc) stands for the Larmor frequency
and ge51/A12be

2. Numerical simulation of these oscilla
tions of the electron beam are presented below in Sec.
see Fig.4. One can see that the originally horizontal displa
ment Dx resulted in both horizontal and vertical displac
ments. Taking into account the possibility of a vertical offs
y, we conclude that antiprotons at the distances behind the
slice will experience momentum changes equal to

Dpx~s!52
eq

c
„Wd~s!Dx2Ws~s!Dy…,
a
us,
is
n
a

I
ch
f

y

d

e
ns

e
se
d

e
f

se

;
e-

t

Dpy~s!52
eq

c
„Ws~s!Dx1Wd~s!Dy…, ~4!

where we introduced direct wake functionWd(s) and skew
Ws(s) wake function:

Wd~s!5Wsin~ks!, Ws~s!5W„12cos~ks!…, ~5!

Wd,s(s)50, if s<0, and

W5
4pneLe

Ba2 , ne5
Je

pa2ve
, k5

vL

~11be!c
. ~6!

Depending on the parameters, one or the other of the
wake functions~5! can give a dominant influence on th
antiproton beam stability. As we will show below, the dire
wake effects are suppressed if there are many Larmor o
lations periods over thep̄ bunch lengthss , while the skew
force impact decreases with increasing thex-y detuning.

To be precise, the influence of the space charge due to
unperturbed antiproton distribution has to be taken into c
sideration when we calculate the wake functions. Rad
electric and azimuthal magnetic fields of the antiprot
bunchEp̄ ,Hp̄ cause slow azimuthal drift of electron Larmo
circles~3! around the antiproton beam axis. The typical dr
angle over the antiproton rms bunch length isud5@(Ep̄

1beHp̄)/Br#ss5Np̄ /A2p(B/e)a2. As a consequence th
direct wake function acquires nonoscillating term. Under p
rameters of interest,Np̄5631010, a51 mm, B520 kG,
the angle is smallud50.05. The drift effect will be neglected
in the two-mode analysis becauseud is much smaller than
the skew-coupling parameter.Ans /(nx2ny).0.3 ~see be-
low!. Nevertheless, numerical simulations in Sec. IV are f
of such a simplification and take the effect into account.

B. Mode coupling

Let us write down single particle equations of motio
along the accelerator orbit:

d2x

du2
1kx~u!x5Fx~u!,

d2y

du2
1ky~u!y5Fy~u! ~7!

here u5s/R5v0t is azimuth coordinate,R is the average
ring radius, andv05c/R is the revolution frequency. The
accelerator focusing lattice is represented by termskx,y . The
forcesFx,y(u) are due to additional fields on the antiproto
orbit. Equation~7! can be presented in terms of slow amp
tudesX,Y determined as

x5X expS 2 i Eu du8R

bx~u8!
D 1c.c.,

dx/du52 iX
R

bx~u!
expS 2 i Eu du8R

bx~u8!
D 1c.c., ~8!

and similarly iny direction. Herebx,y(u) are horizontal and
vertical beta-functions. Assuming the forcesFx,y being lo-
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PRE 59 3607TRANSVERSE BEAM STABILITY WITH AN ‘‘ELECTRON LENS’’
calized within a small azimuthal interval where beta fun
tions arebx,y , we get from Eq.~8! the equations for the
amplitudesX,Y:

dX

du
5

ibx

2R
Fx exp~ inxu!,

dY

du
5

iby

2R
Fy exp~ inyu!, ~9!

wherenx,y5*2p
p @du8R/bx,y(u8)# are the betatron tunes.

For the typical parameters of the electron compressor,
Larmor phase advancefL over the rms pbar bunch lengthss
is very large. For example, takingB510 kG, be50.2, ss
530 cm, one getsfL5ks'2332p. As we will estimate
later, the fast oscillating terms in the wake forces~5! give
insignificant effect in the slow amplitudes, and we can lim
our consideration with only steplike termWs(s)5W. Using
the ‘‘hollow-beam’’ model@8# which assumes the same sy
chrotron oscillation amplitude for all particles, we get t
following expressions for the forces:

Fx~u!52dP~u!FE
2ucu

ucu
y~c8!dc8,

Fy~u!5dP~u!FE
2ucu

ucu
x~c8!dc8, ~10!

2p<c<p, F5
Wrp̄Np̄R

2pg p̄

,

wherec is the synchrotron phase anddP(u) is the periodicd
function with *2p

p dP(u)du51. Equations~9! can be solved
with the substitution

d/du5]/]u1ns]/]c, ~11!

wherens is the synchrotron tune.
The result of the integration depends on the vicinity of t

synchrobetatron resonancesnx6ny1kns5 l , wherek, l are
integer numbers. If the numberk of the nearest sum reso
nance is high enough, then the influence of the resonance
be neglected. It is equivalent to a drop of the complex c
jugated terms in Eq.~8!. The solutions are expanded no
over the unperturbed synchrotron modes:

X5exp~ i ñxu! (
m52`

`

xm exp~ imc!,

Yexp~2 i ñxu! (
n52`

`

yn exp~ inc!, ~12!

where ñx,y stand for fractional parts of the tunes. Belo
these modes are referred to asuxm&,uyn&. Eigenvectors
xm ,yn}exp(2inu) and eigenvaluesn to be found from the
following set of algebraic equations:

xm52
Fbx

2R~ ñx2n1mns!
(

n
Cmnyn ,

yn5
Fby

2R~ ñy2n1nns!
(

l
Cnlxl , ~13!
-

e

t

an
-

Cmn5E
2p

p dc

2pE2ucu

ucu dc8

2p
exp~2 imc1 inc8!.

The matrix elements are presented below:

Cmn5
1

2p2n
S 12~21!n1m

n1m
1

12~21!n2m

n2m D
for nÞ0,6m,

Cm052
12~21!m

p2m2
for mÞ0, ~14!

Cmn50, for n56mÞ0,

C0051/2.

Generally, Eqs.~13! may have unstable solutions whe
the coherent interaction}F is strong enough to couple th
unperturbed synchrotron modes. There are possibilities
couple a pair of modes which belong to the same plane~ver-
tical or horizontal! or to different planes. For example,
ny,nx , then, with an increase of the interaction parame
F, the first pair of the same polarity modes to couple isuy0&
and uy1&. The motion inx plane may be considered as
forced motion at the frequencyñy , which makes thex equa-
tion ~13! independent on the sought-for frequencyn. Substi-
tution of thex equation~14! into they equation yields

~ ñy2n1nns!yn1ans(
m

Gnmym50,

a5F 2bxby /~4R2Dnns!, Gnm5(
l

CnlClm , ~15!

where Dn5nx2ny . Neglecting the contribution of all the
modes apart from the coupled onesuy0&,uy1& results in a
quadratic equation on the eigenfrequencies. The solution
the equation are real when the following threshold condit
is satisfied:

a<aS5~1/412/p224/p4!21'2.43 ~16!

that leads to

F<FS52RAaSDnns /~bxby!'3.12RADnns /~bxby!.
~17!

This condition can be also expressed in terms of thresh
magnetic field:

B>Bth'1.3
eNp̄Ajxjy

a2ADnns

. ~18!

For jx5jy50.01, Np̄5631010, ns50.001, Dn50.01, a
51 mm it comes outBth512 kG.

Other solutions of Eqs.~13! are associated with the cou
pling of x andy modes. The most dangerous case is reali
in the vicinity of the resonancenx1mns5ny1nns ; then the
quadratic equation for the eigenfrequency is as follows:
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3608 PRE 59A. BUROV, V. DANILOV, AND V. SHILTSEV
~n2 ñx2mns!~n2 ñy2nns!5
2F 2bxby

4R2 CmnCnm .

~19!

The stability condition reads

~ ñx2 ñy2mns2nns!
2>~F 2bxby /R2!CmnCnm . ~20!

Apart from C00, all nonzero matrix elementsCmn ~14!
change sign after the transposing, thus, the right hand sid
Eq. ~20! is negative and the condition is satisfied. Therefo
only ux0&2uy0& coupling can result in an instability. To
avoid it, the interaction constantF has to be small enough

F<2RuDnu/Abxby. ~21!

This stability condition can more stringent than the previo
one ~17! if uDnu<aSns . The corresponding instability doe
not involve head-tail modes, does not depend on the s
chrotron tune, and is a single particle dynamics effect.

The fast oscillating direct wake functionWd(s) ~5! gives
the matrix elements suppressed as}1/(kss). As a result, the
threshold value of the interaction parameterF for the direct
instability FD occurs to be much higher then the skew o
FS :

FD /FS.kssAns /Dn@1. ~22!

Therefore, it is the constant skew wake that plays a ma
role in the mode coupling.

C. Scaling with electron beam radius

Let us consider an electron beam with radius larger t
the antiproton beam radius,ae@ap̄ . To find out how the
direct and skew wake functions scale with the electron be
radius, we start with the continuity equation for the electr
media:

]re

]t
1¹W •~nevW e!50, ~23!

wherene andre are the electron density and its perturbatio

vW e is the electron velocity. Dealing with the antiproton sli
of chargeq and offsetDx which causesr i and corresponding
the electric fieldEW i , we get

r i~x,y,s!5
Dxxq

r

dni

dr
d~s!,

¹W •E dsEW i~s!524peE dsr i~s!, ~24!

E drWni~r !51, r 25x21y2

and all the vectors, including¹W , are transverse two
dimensional ones.

Just after the kick, the electron velocityvW e(0) is

vW e~0!5creE dsEW i~s!/e. ~25!
of
,

s

n-

r

n

m
n

,

Then, the awaken electron velocity undergoes the Larm
rotation:

vW e~ t !5T̂~ t !vW e~0!, ~26!

with the rotation transformation matrix of

T̂~ t !5S cos~vLt ! 2sin~vLt !

sin~vLt ! cos~vLt !
D . ~27!

Collecting these equations altogether and denotingrWe(t)
5*0

t dtvW e(t), it comes out

re52ne¹W •vW e~0!sin~vLt !/vL2rWe~ t !•¹W ne . ~28!

The first term in the right hand side of the last equation le
to the oscillating direct wake function. It is determined b
the electron density at the location of the antiproton be
and is not influenced by the remote boundary of the elect
beam. So it may be concluded that the oscillating direct w
does not depend on the electron beam radius when the
tron density is fixed. Equation~5! gives an estimate for this
wake function.

The second term in Eq.~28! contains the non-oscillating
drift part rWe5vW e(0)3vW L /vL

2 and, actually, describes th
constant part of the skew wake. Mostly, the electron bou
ary contributes to this term as it is}¹W ne . To see its scaling
with the electron beam radiusae , one notes that the field o
the dipole perturbation drops quadratically with the rad
Ei(rW)}1/r 2. Consequently, the constant wake function go
down the same way

Ws}ne /ae
2 . ~29!

Thus, an increase of the electron beam radius can be us
suppress the skew instability.

III. MULTIMODE ANALYSIS

The two mode model presented in the previous sec
allowed to derive analytical formulas for the TMCI thresho
taking into account only the constant skew component of
wake force due to the electron beam and just two coup
modes. More general numerical algorithm for calculating
mode coupling developed in Ref.@9# allows to avoid such
simplifications and consider many modes and general w
form, and, important, deals with nonaveraged motion. F
that the antiproton bunch is divided into several radial a
azimuthal parts in the synchrotron phase space, and co
quently, a series of synchrobetatron modes can be seen.
wake force kick changes the backward particles ang
while the rest of the accelerator is represented by a lin
transformation matrix~rotation in phase space!. Eigenvalues
~eigentunes! of the resulting transformation matrix can b
calculated numerically. Complexity of the calculations
squared the number of modes, so, for calculations w
MATHCad software one has to limit the number.

We divide the bunch in 1 radial~i.e., the same synchro
tron oscillations amplitude for all particles! and 7 azimuthal
parts for both vertical and horizontal degrees of freedom
it is possible to see the behavior of the first 1 radial and
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PRE 59 3609TRANSVERSE BEAM STABILITY WITH AN ‘‘ELECTRON LENS’’
azimuthal synchrobetatron modes in horizontal and vert
motion with taking into account their coupling. Comple
expressions for the linearized direct and skew transve
wake functions Eq.~5! are used.

Numerical parameters used in these calculations areNp̄
5631010, the rms size of round Gaussian antiproton be
is s p̄51 mm, the longitudinal magnetic field is equal
10 kG. Figure 1 shows the eigentunes versus the linear
tatron tune shiftje due to interaction with electron beam
while the fractional part of the betatron tune for the horizo
tal motion is equal tonx50.556 and for the vertical oneny
50.555, the synchrotron tune is 0.001, therefore, the b
tron tunes difference is exactly the synchrotron tune. Ifje
50.0, then the eigenfrequencies of the azimuthal modes
equal tonx,y1kns , where integerk has 7 values in the rang
of 23, . . . 3 andrepresents the number of modulation pe
ods in the synchrotron phase space. Some of the mode
coupling with increase ofje , real parts of their tunes Ren
~see upper series of curves in Fig. 1! become equal, while
imaginary parts Imn become one negative and another po
tive. The latter evidently means instability in the motion.
our case, the first merging of modes takes place aj
'0.0017; the next merging of higher modes occurs aj
'0.0045, etc.

Next Fig. 2 shows the tune shift thresholdje for the first
coupling modes versus the tune split in units of the synch
tron tuneDn5(nx2ny) while the vertical tune is equal to
0.555. The threshold grows linearly untilDn'(222.5)ns

and then is approximately proportional toADn, in a good
agreement with the two mode model formulas~18! and~21!.
Note, that completely adequate consideration of the fast
cillating parts of the wakes would require many more mod
;kss.302100 to be taken into account.

IV. SIMULATIONS

A. The code

Three dimensional numerical simulations of the effe
have been done with ECWAKE code written in FORTRA

FIG. 1. Eigenfrequencies~tunes! of the antiproton bunch oscil
lation modes versus the antiproton betatron tune shift due to e
tron beamje ~horizontal axis!. Vertical scale on the left is for
fractional part of the tunes Ren ~upper series of lines!, the right
side scale is for imaginary part of the tunes Imn ~lower series of
lines!.
al

se

e-

-

a-

re

are

-

-

s-
s

s

The p̄ beam is represented as a number of macroparti
~typically in the range fromM5128 to maximum 2048!. The
particles have equal chargeseDNp̄5eNp̄ /M . Numerical
procedure to generate the longitudinal phase space dist
tion starts with pairs of numbers (t i ,ui),i 51, . . . ,M uni-
formly distributed in a unit circle, then the longitudinal po
sition of i th particle t i and its derivativey i5dt i /(dt
•nsv0) are derived as

~t i ,y i !5L~ t i ,ui !A12~12t i
22ui

2!1/~11m!

t i
21ui

2
, ~30!

where 2L is the maximum bunch length, and the parame
m determines the bunch shape. The smoothed density in
gitudinal phase space is proportional to (L22t22y2)m, and
the corresponding line density is proportional to (L2

2t2)m11/2. Figure 3 shows an example of the longitudin
distribution of 1024 particles generated with use of Eq.~30!
with m51.5.

Initial distribution of particles transverse coordinates a
velocities does not play a big role in the development of
subject instability, and usually we either assign the sa
displacement to all particles or use 2D Gaussian numbers

c-

FIG. 2. Threshold antiprotons tune shiftje ~vertical axis! due to
the electron beam versus the difference of antiproton horizontal
vertical tunesDn5nx2ny . B510 kG, ns50.001, andNp̄56
31010.

FIG. 3. Longitudinal distribution of 1024 macroparticles in a
tiproton bunch generated according to Eq.~30! with m51.5.
Dashed line is for (L22t2)m11/2.
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3610 PRE 59A. BUROV, V. DANILOV, AND V. SHILTSEV
xi ,yi ,vxi ,vyi ~in the latter case, unstable motion starts fro
noise!. During the simulation, the longitudinal variables a
updated once per turn using a rotation with angle 2pns ,
while the horizontal and vertical variables are rotated
2pnxi and 2pnyi , respectively. Generally, the transver
tunes are not the same for all particles—instead, one
distribute them uniformly with maximum deviation of6dn
around mean values ofnx,y .

At every turn the particles collide with an electron bea
and, therefore, excite Larmor motion of the electron beam
simulation, the electrons’ angular kick due to antiprotons
used in linear approximation:

DW ue5
DW pe'

gemcbe
'2

DNp̄r e

gebes p̄
2 ~r p̄

W2r e
W !, ~31!

wheres p̄ is the rms size of round Gaussian antiproton bea
r e52.82310215 m is electron classical radius, and vecto

r p̄
W ,r e

W denote positions of antiproton slice and electron be
centroid, respectively. Every such a kick results in Larm
oscillations of electrons. Note, that due to Gaussian distr
tion function, the kick~31! has no numerical factor 2 as i
Eq. ~2! ands p̄ is used instead ofa.

Figure 4 demonstrates the electron beam displacem
xe ,ye behind the only macroparticle at thep̄ bunch head~at
s5230 cm) displaced inx plane in longitudinal field ofB
51,4 and 20 kG. One can see, that amplitude and perio
the Larmor oscillations are both inversely proportional toB:
larger amplitude oscillations are forB51 kG, the smallest
amplitude is seen for 20 kG, and the 4 kG solenoid field c
is intermediate. The motion iny plane has nonzero mea
component if the original displacement is inx plane ~and
vice versa!—that is the skew impedance source discusse
Sec. II.

All preceding macroparticles contribute to the electr
beam displacement which is seen by a subsequent macr
ticle. ~In particular, this is the reason of the slow drift co

FIG. 4. Electron beam motion due to displacedp̄ slice in sole-
noid magnetic field ofB51, 4, and 20 kG.
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tribution discussed in Sec. II.! As a result, the angular kick
due to the electron beam depends on the macroparticle p
tion t:

Dxp̄
8~t!52

4pje

bx
„xe~t!2xp̄~t!…, ~32!

with a similar formula for they plane;je is given in Eq.~1!.
At every turn we use a standard fast algorithm@10# for sort-
ing the valuest i so thatt i<t i 11 . It is based on ‘‘doubling
strategy’’ and requiresM log2 M operations. Calculation o
the kicks Eq.~32! needs accumulation of Larmor perturb
tions of the electron beam to obtainxe(t i) that is done with
another fast algorithm~of the order ofM log2 M operations!
similar to phasor technique described, e.g., in@8,11#. The
code allowed to track all variables involved, e.g. coordina
of any macroparticle andp̄ beam centroid coordinates, mo
tion of the electron beam parts, etc.

We have tested the code with a specific analytical mo
of the TMCI with constant wake function where the kick
equal to

Dxi85
W0

M (
j < i

xj .

If all macroparticles have the same synchrotron amplitu
~often called ‘‘hollow’’ beam model!, then theory@12# pre-
dicts threshold value ofW0

thr'14ns for small synchrotron
tunesns!1 which does not depend on the bunch length
and that is what we have revealed with our code.

B. Simulation results

Figure 5 presents spectra of horizontal motion of the
tiproton bunch centroid over 16 384 turns. Several cur
correspond to solenoid fieldB while antiproton parameter
are the same: number of macroparticlesM51024, constant

FIG. 5. Antiproton oscillations spectra with different soleno
field B518, 20, 40, and 400 kG.nx50.585, ny50.575, ns

50.001, je520.01, dn50, Np̄5631010, and p̄ beam s p̄

50.7 mm.
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longitudinal charge distribution~30! with m521/2 andL
570 cm, Np̄5631010, s p̄50.7 mm, unperturbed lattice
tunes are close to the Tevatron ones (nx0 ,ny0)
5(0.585,0.575), nominal tune shift due to electron be
jx,y

e 5je520.01, synchrotron tunens50.001, and no beta
tron tune spreaddn50.

The wake field strengthW from Eq. ~6! is inversely pro-
portional toB, thus, the spectrum corresponding to the hig
est B540 T—see the lowest curve in Fig. 5—the on
strong line atnx'nx01je'0.5644 and several weak line
are shifted on integer number of synchrotron tunes, in p
ticular, the first upper synchrotron side-band atnx1ns .
Weaker magnetic field leads to stronger wake because la
Larmor motion of electrons is exited. As a result, synch
tron side-bands become stronger—see next two curves
above another in the figure, corresponding toB54T and 2T,
respectively. Simultaneously, frequencies of some mod
e.g.,nx andnx1ns shift toward each other. At the thresho
value ofBthr'1.8 T, these lines merge, see the upper sp
tra in Fig. 5, the amplitude of the motion becomes very hi
and any further decrease ofB will lead to instability which
develops over less than 16 384 turns to unacceptably
amplitudes for numerical tracking.

It is revealed, that although thep̄ bunch motion is essen
tially two-dimensional~since the wake is 2D!, the instability
starts in that plane where the original lattice tune is close
half integern51/2, e.g., in horizontal plane for the examp
discussed above.

Next Fig. 6 shows the threshold strength of solenoi
magnetic fieldBthr vs electron beam intensity parameterje
for antiproton bunch population equal toNp̄5(1,6,10)
31010—lower, middle and upper curves, respectively. W
define the threshold as the value ofB which results in more
than 10-fold increase of the initial centroid betatron amp

FIG. 6. Threshold solenoid fieldBthr vs tune shift due to elec
trons ujeu at different bunch populationsNp̄51, 6, 1031010. Fo-
cusing lattice tunesnx50.585, ny50.575, synchrotron tunens

50.0012, maximum tune spreaddn50, and the rms size ofp̄ beam
s p̄50.7 mm.
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tude over the first 10 000 turns. One can see, that the fie
approximately proportional to bothje andNp̄ in accordance
with theoretical prediction Eq.~18!.

Dependence of the threshold on the synchrotron tunens
is depicted in Fig. 7. Dots are simulation results w
nx 5 0.585, ny 5 0.575, je 5 20.01, dn 5 0.002, Np̄56
31010,s p̄50.7 mm. The solid line represents a fitBthr

517.5@kG#/Ans/0.001 in line with the two-mode prediction
Eq. ~18!.

Contour plot ofBthr over range of synchrotron tunesns
50.000220.002 andujeu50.00220.02 is shown in Fig. 8
(nx50.585, ny50.575, other parameters are the same
above!. One can see thatBthr varies from 12 kG to 48 kG
over the parameter space. In order to evaluate the importa

FIG. 7. Threshold magnetic field vs synchrotron tunens . Solid
line is for Bthr512.4@kG#/Ans. nx50.585, ny50.575, je5
20.01, dn50, Np̄5631010, ands p̄50.7 mm.

FIG. 8. Contour plot of the TMCI threshold magnetic field v
synchrotron tunens and tune shift due to electronsujeu.
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of the oscillation part of the wakes Eq.~5!, we performed
similar scan without the constant part of the skew wake,
with Wd(s)5Wsin(ks) and Ws(s)52Wcos(ks) and found
that about 5 times smaller solenoid field is required for s
bility. It confirms the decisive role of the constant part
skew wake that is a basic assumption of the two-mode mo
in Sec. II.

It is found that the TMCI threshold greatly depends
operation pointnx ,ny . Figure 9 presents results of scanni
of the horizontal tunenx from 0.52 to 0.63 while the vertica
tune isny50.575. In close vicinity of the coupling resonan
Dn5unx2nyu<15ns the threshold magnetic field depen
onns approximately as}1/uDnuk, where 2/5,k,1/2. Away
from the resonance, the best fit power isk'1/5. The tune
dependence on the tune split is different from Eq.~33! if
uDnu is more than 15ns'0.015. The threshold also goes u
near half-integer resonancenx→0.5.

In order to compare with the two mode model, one can
Bthr in the form similar to Eq.~18!:

Bthr'
0.95eNp̄je

s p̄
2Aunx2nyuns

5
~17.5 kG!Np̄ /631010uje /0.01u

~~s p̄ @mm# !/0.7!2Ans /0.001uDnu/0.01
; ~33!

see also dashed line in Fig. 9.
There is a difference in numerical factors between E

~33! and Eq.~18! which is probably because of~a! the kick
~31! due to Gaussian beam has no numerical factor 2 a
Eq. ~2!, ands p̄ is used instead ofa; ~b! oscillating parts of
the wake forces and the effects of the drift of electrons in
space charge fields of the antiproton beam are taken
account in simulations in contrast to the two modes mod
~c! more than two modes play a role in the computer track
because of large number of macroparticles. At the same t
there is an excellent quantitative agreement with results
multimode analysis presented in Fig. 2.

FIG. 9. Threshold magnetic field vs horizontal tunenx . Dashed
line corresponds toBthr}1/Aunx2nyu; ny50.575, ns50.001, je

520.01, dn50.0, Np̄5631010, ands p̄50.7 mm.
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Neither two-mode theory nor multimode analysis in Se
II and III, respectively, deal with tune spread in thep̄ bunch,
though a general guess is that it has to ease the instabilit
numerical simulations presented in Fig. 10, we trackedM
5256 macroparticles each having slightly different vertic
and horizontal tunes spread in interval6dn around their
mean valuesnx,y5(0.585,0.575), see the upper curve in t
figure, andnx,y5(0.595,0.575), see the lower curve. In bo
cases the tune spread helps to stabilize the TMCI and, e.
dn.uDnu then the requiredBthr is 1.5–2 times less than in
the case ofdn50. We need to note, that while macropa
ticles differ from each other by their longitudinal position
the way we introduce the tune variation is equivalent to
tune spreadalong the bunch. In the Tevatron it can be caus
by direct space charge in a bunched beam ofp̄s. The corre-
sponding tune spread is about 0.001 at injection energy
150 GeV, and, thus, comparable with synchrotron tunens
'0.00120.002, but is negligible at the collision energy
0.9–1 TeV as it scales as}1/g p̄ .

Theoretical analysis made in Ref.@13# predicts a signifi-
cant suppression of the TMCI due to Landau dampi
caused by the tune spreadacross the beam if the latter is
comparable or larger than synchrotron tune. That condit
can take place in the Tevatron collider where the sprea
due to beam-beam interaction and the nonlinearity of foc
ing lattice. Correct macroparticle tracking would requi
many particles in each macro slice, and, thus, a differ
code and presumably much more CPU time. This is a sub
of further work. With our existing code we can mimic a
effect of decoherence caused by the transverse tune sp
simply by introduction a decrement of betatron oscillatio
d. The resulting instability threshold can be described b
fit Eq. ~33! if one replacesns↔Ans

21d2.

V. CONCLUSIONS

We have considered ‘‘strong head-tail’’ instability of th
Tevatron antiproton bunch due to the beam-beam compe

FIG. 10. TMCI threshold magnetic field vs maximum betatr
tune spreaddn in the antiproton beam.Dn5unx2nyu50.585
20.57550.01 for the upper curve; andDn50.59520.57550.02
for the lower curve. Synchrotron tunens50.0012, tune shift due to

electronsje520.01, Np̄5631010, and rms size ofp̄ beams p̄

50.7 mm.
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tion set-up. The ‘‘head-tail’’ interaction takes place when t
electron beam is not rigid enough and can be displaced tr
versely by the bunch head particles. The resulting direct
skew wake forces act on the ‘‘tail’’ particles and, thus, c
lead to the instability. We pursue three approaches to st
the instability: a simple twomode coupling theoretical mod
more sophisticated multimode analysis which requires
merical solution of eigenmode equations, and straight
ward macroparticle computer simulation. The results co
cide qualitatively and rather well quantitatively agree w
each other. For the parameters of the planned Teva
beam-beam compensation experiment thep̄ bunch intensity
eNp̄5631010 and its rms sizes p̄50.7 mm, the tune shift
due to electron beamje520.01, the distance to the couplin
resonanceDn5unx2nyu50.01, and the synchrotron tun
ns50.001, the instability takes place if the longitudinal ma
netic field in the setup is below threshold of aboutBthr
517.5 kG. Essential features of the instability are~1! the
constant skew wake plays a major role in the mode coupl
~2! the threshold solenoid fieldBthr is proportional to the
transverse charge density of the electron beam, to the tr
verse charge density of the antiproton beam, and inver
-

-
4

s-
d

dy
l,
-

r-
-

on

-

g;

s-
ly

proportional to the productns
1/2unx2nyuk,k'1/2 in the vicin-

ity of the coupling resonancenx2ny5 integer; ~3! a tune
spread comparable or larger thanns can lead to substantia
suppression of the instability.

Rough estimates have shown that having the elec
beam transverse sizeae several times wider than the antipro
ton rms beam sizes p̄ results in lower threshold magneti
field Bthr}(s p̄ /ae)

2.
We plan to continue investigations of the instability

order to clear some inadequacies of the present studie
particular, the following effects have to be taken into cons
eration: ~1! nonlinear forces with general current distrib
tions in the electron and antiproton beams;~2! instability
suppression due to betatron and synchrotron tune spre
and ~3! higher order transverse mode coupling.
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